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Mach number 
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local free-stream static pressure ahead of interaction 

wall pressure ahead of interaction 

heat flux 

heat flux ahead of interaction 

radial coordinate, distance from model centerline 

density 

local free-stream density ahead of interaction 

mass flux (pu) 

local free-stream mass flux ahead of interaction 

distance along model surface measured from flare-cylinder junction 

circumferential distance on cylinder measured from fin center line (see fig. 8) 

temperature 

local free-stream static temperature ahead of interaction 

stagnation temperature 

local free-stream temperature ahead of interaction 

total velocity 

local free-stream velocity ahead of interaction 

axial coordinate, distance from leading edge of sharp fin (see fig. 8) 

distance normal to cylinder centerline measured from model surface 

boundary-layer thickness 

compressible displacement thickness, 
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Subscripts: 
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W 

00 

compressible momentum thickness, 

flare, fin, or measurement station angle (see figs. 1 and 8) 

density 

shear stress 

initial value 

initial conditions 

wind tunnel stagnation conditions 

Wall 

local free stream ahead of interaction 

iv 



DOCUMENTATION OF TWO- AND THREE-DIMENSIONAL HYPERSONIC SHOCK 

WAVElTURBULENT BOUNDARY LAYER INTERACTION FLOWS I 

M. I. Kussoy' and C. C. Horstman 

Ames Research Center 

SUMMARY 

Experimental data for a series of twe and three-dimensional shock wavdturbulent boundary layer 
interaction flows at Mach 7 are presented. Test bodies, composed of simple geometric shapes, were 
designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and 
turning angle. The data include surface-pressure and heat-transfer distributions as well as limited mean- 
flow-field surveys in both the undisturbed and the interaction regimes. The data are presented in a conve- 
nient form for use in validating existing or future computational models of these generic hypersonic flows. 

INTRODUCTION 

To design realistic aerodynamic vehicles to fly in the hypersonic flow regime, it is of primary 
importance to be able to predict, with reasonable reliability, the aerodynamic characteristics of such vehi- 
cles. Extended and expensive design programs can thereby be significantly improved, and efficient 
designs identified and studied. Before attempting to predict the aerodynamics of the flow over a complex 
vehicle (one with a cockpit, fuel tanks, and other appurtenant structures) flying at angle of attack, one 
should be able to reliably predict basic flow properties, such as surface pressures, heat-transfer distribu- 
tions, skin friction lines, extent of separation (if any), flow direction, etc., on simple generic shapes. 
Without the ability to verify computations by experiment on a simple generic body, attempting to predict 
the flow field over a complex body would be unproductive. The present authors have identified several 
key features of flows over such vehicles, and have designed test bodies composed of simple geometric 
shapes over which these flow features can be measured. 

The test body employed in the present study consisted of a cone/ogive cylinder at zero angle of 
attack. Attached to the cylinder were a series of axisymmetric flares or symmetric sharp fins (fig. 1). 
Both the flare and fin angles were varied, producing shock waves of various strengths, and resulting in 
both attached and separated flow fields. Detailed boundary-Iayer surveys have verified a fully developed 
turbulent boundary layer on the cylinder ahead of the interaction region. 

The data obtained during this test program (undisturbed flow-field surveys, surface-pressure and 
heat-transfer distributions, and several selected flow-field surveys on one flare body) can be used as a data 
base against which existing computer codes should be verified. In this way, turbulent flow models can be 
evaluated against flows which are relatively simple (Le., generic two- and three-dimensional 12-D and 
3-D] flows) but exhibit the basic flow characteristics of a more complex flow over a flight vehicle. 
Presented here are data from the first test series using these test bodies. Additional data obtained include 
complete flow-field measurements on the flare bodies; these will be presented in a future publication. 
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DESCRIPTION OF EXPERIMENT 

Facility 

The experiment was conducted in the Ames 3.5-Foot Hypemnic Wind Tunnel where heated, 
high-pressure air flows through a 1.067-m-diam test section to low-pressure spheres. The nominal free- 
stream test conditions were total temperature, 900 K, total pressure, 34 arm; free-stream unit Reynolds 
number, 7x106 m-1; and free-strea~ Mach number, 7.2. The test core diameter was approximately 0.7 m 
with an axial Mach-number gradient less than 0.12 m-1. Useful test time was 3 min. Run-to-run varia- 
tions in pressure and Mach number were less than 0.5%. However, the wind-tunnel total temperature 
varied up to 50 K from run to run, and, in addition, during a single run, it varied about 50 K over the 
3-min test time. These variations required special data-reduction procedures which will be discussed later. 
Free-stream fluctuation measurements have been made in this facility under the above nominal test condi- 
tions (ref. 1). The average total temperature and mass-flow fluctuations were 0.83% and 2.7%, 
respectively . 

Test Bodies 

Basic test bed. The model consisted of a cone-ogive cylinder, 2 m long and 0.203 m in diameter. 
It was water-cooled, and surface temperature was maintained at 310 k5 K during each run. Intmhange- 
able instrumentation ports, 12 cm in diameter and specially contoured to fit flush with the cylinder surface, 
were placed at 25cm intervals along the cylinder in a single line and at 50cm intervals in another single 
line 180" away. Individual ports were instrumented with static pressure taps and thermocouples. One port 
accommodated a survey mechanism to which static pressure, total pressure, and total temperature probes 
could be attached for flow-field surveys. Additional static pressure taps and thennocouples were located 
at 5 c m  intervals along the entire length, in a single line 90" away h m  the instrumentation ports. At sev- 
eral points along the cylinder, static pressure taps were located every 90" around it. 

Flares. Four flares were tested, with half angles of 20°, 30°, 32.5', and 35'. They were placed on 
the cylinder 139 cm from the cone tip, as shown in figure l(a). The flares were fabricated in two halves. 
A 2.5-cm-wide slit was milled in one of the halves, along its axis. Contoured plates 0.254 cm thick, 
either blank or instrumented, covered the slit. Instrumentation on an individual flare could thus be easily 
changed between tunnel runs. For the flow survey runs, the flare was positioned over the port containing 
the survey mechanism (see below) at the desired streamwise location, and a small access hole was drilled 
through the contoured cover plate. This access hole accommodated the particular survey probe being 
used. 

b. Three noninstrumented fins, with half angles of lo", 15', and a", were investigated. They 
were bolted to the cylinder 120 cm h m  the tip, as shown in figure l(b). 

Inst rumentat ion 

Surface mssm . Static pressure taps of 0.16-cm internal diameter were located along the model 
surface as well as in several instrumentation ports, and were connected with short lengths of stainless steel 
tubing (10 to 15 cm long) to strain-gauge, absolute-pressure transducers. In situ calibrations were made 
by varying the wind tunnel test-section pressure, and recording it using a Datametric strain gauge differ- 
ential pressure cell which had been calibrated previously with a dead-weight tester. All calibrations were 
linear, and were repeatable to within 1 %. In addition, a pressure-scanning system was used to obtain 
accurate measurements of the low static pressures present on the model surface and in the flow field. This 
system was designed to be calibrated in situ with carefully monitored pressures. Before each run, a 
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transducer reading was obtained at the wind tunnel starting pressure (approximately 0.01 am) to 
determine the zero offset of the gauges. The transducers were watercooled, and all were located within 
the model. 

Surface heat transfer. Surface heat transfer was measured by the transient thin-skin technique. For 
measurements on the cylinder surface, ports were instrumented with chromel-alumel themocouples 
spotwelded to the interior surface, approximately 1 cm apart. These instrumented parts were used to 
measure the heat transfer upstream of the flare bodies and also on the surface adjacent to the fin. (In addi- 
tion, four Schmidt-Boulter heat-transfer gauges were placed in the port upstream of the flares.) Heat 
transfer was also measured along a ray of each flare surface by instrumenting a contour plate with 
chromel-alumel thermocouples spaced 0.5,1, or 2 cm apart. For these tests, the entire model was kept at 
mom temperam, then inserted into the flow after the desired flow conditions were obtained. Depending 
on the thermocouple location, the temperature rise (with the i n t e d  model water-cooling system discon- 
nected) varied from 10 to 50 K during a typical 30-sec heat-transfer run. The data were reduced by 
obtaining a least squares linear fit of In [(TT - Tw)/(TT - TwJ] versus time. The variation of the wind 
tunnel total temperature (TT) with time was included. Calculations using the procedures outlined in refer- 
ence 2 indicated that for the above test conditions the temperam of the interior wall rises to that of the 
exterior wall after 2 sec, and that longitudinal conduction errors are less than 5% of the measured convec- 
tive heat transfer. Therefore no corrections were applied to the data. 

2. A precision power screw was driven by a stepping motor, whose shaft was capable of turning in 
controlled increments as small as 1.8', or in any multiple of 1.8'. The vertical resolution of this mecha- 
nism was 0.0003 em. The rotary motion of the motor shaft was coupled to the precision screw with 
antibacklash bevel gears, and the vertical position was obtained from a three-turn precision potentiometer 
driven by an antibacklash worm gear. 

Swvev mechanism. Flow-field surveys were obtained with the survey mechanism shown in figure 

Pitot pressure urok . Pitot pressures in the flow field were measured by a stainless steel probe, as 
shown in figure 3. The probe was calibrated in a &-jet facility, matching Mach number, velocity, and 
density with the present test conditions. This calibration indicated that the ~ITCK due to rarefaction effects 
was less than 196; therefore no corrections were applied to the pitot data. The p b e  was attached to a 
water-cooled pressure transducer located within the model, c o ~ e ~ t e d  with a short length (about 8 an) of 
stainless steel tubing. The pressure-transducer calibration procedure was identical to the surface-pressure 
procedure discussed previously. 

Static uressure urobe. Static pressures in the flow field were measured by another stainless steel 
probe, as shown in figure 4. This probe is geometrically similar to one used by Behrens (ref. 3), i.e., a 
10' cone-cylinder. Independent calibrations to account for viscous interaction effects agreed with 
Behrens' calibration. The maximum viscous corrections applied to the data were 2% in the interaction 
region and 7% in the undisturbed region ahead of the shock wave. The probe was attached, by a short 
length (about 8 cm) of stainless steel tubing, to a water-cooled pressure transducer located within the 
model. The pressure-transducer calibration procedure was identical to the surface-pressure procedure 
discussed previously. 

Total temmture urobe. Total temperatures in the flow field were measured with the probe shown 
in figure 5. This probe was designed using a concept suggested by Vas (ref. 4). An unshielded, butt- 
welded chromel-alumel thermocouple (0.3 cm long by 0.007 cm thick) was supported by tapered chrome1 
and alumel posts. A second chromel-alumel thermocouple was formed at the end of the alumel support 
(fig. 5).  This allowed a simultaneous measurement of the butt-welded thermocouple junction and the 
probe support. 

Corrections for radiation, conduction, and recovery factor were made following the method 
described in reference 4. To make these corrections, one must know the local Mach number and Reynolds 
number, this requires an iterative procedure using the pitot and static pressure data. In the present study, 
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radiation effects were negligible. Independent calibrations of these probes in the wind tunnel free stream 
indicated a maximum total temperature er ro~ of 1.5%. 

Test Drocedurg . Data were obtained during a series of runs with the wind tunnel operating at the 
nominal conditions described above. Before each run, the test body was positioned outside the open jet. 
Flow was then initiated. When the desired test conditions were reached, the model was insexted into the 
test stream. The model was retracted before tunnel shutdown. 

To establish the presence of a fully developed, equilibrium, hypersonic, turbulent boundary layer 
approaching the interaction region, pitot pressure, static pressure, and total temperature surveys of the 
boundary layer were taken at a distance of 133 cm from the model nose. For these undisturbed boundary- 
layer surveys, the cone-ogive-cylinder test body was run devoid of any flare or fin appendages. Previous 
tests using this identical cone-ogivecylinder test body (see ref. 5) established the existence of a fully 
developed, self-similar turbulent boundary layer with a negligible pressure gradient 100 to 300 cm from 
the model tip. Natural transition from laminar to turbulent flow occurred between 40 and 80 cm from the 
model tip. Velocity, density, and pressure profiles were obtained from the pitot and static pressure and 
total temperature surveys. Each survey was taken during a single test run. In traversing the flow field, 
the probe was stopped at each location for a few seconds to ensure that there was no time lag in the pres- 
sure or temperature measurement Survey data were obtained up to 3.0 cm from the (cylindrical) model 
surface. The static pressure at the model surface was monitored continuously during all traverses to verify 
that the data were free from interference effects. 

Ax i sme t ry  . Surface pressure was measured at selected axial positions at 90" intervals around the 
model. Variations in these measurements were less than could be accounted for by the experimental error 
in measurement. Also, results from surface-oil-film studies obtained while investigating the higher-angled 
flare bodies showed symmetric separation lines around the model. From these results it was concluded 
that the flow was axisymmetric. 

EXPERIMENTAL RESULTS 

Local Free-Stream Conditions 

Surveys of pitot and static pressure and total temperature were obtained at a location upstream of 
the interaction region (1 33 cm downstream from the tip) to determine the undisturbed local free-stream 
conditions immediately ahead of the flow field under investigation. The velocity profiles obtained from 
these mean flow-field surveys were transformed using the Van Dreist II transformation (ref. 6)  into 
incompressible coordinates, and are shown in figure 6 in law-of-the-wall coordinates. Also shown on this 
plot is Coles' universal law of the wall (ref. 7). These profiles verify the presence of a hypersonic, fully 
developed turbulent boundary layer immediately upstream of the interaction region for the axisyrnmetric 
flared test bodies. By using the law-of-the-wall concept, surface skin fiiction was determined; this value 
was Cf = 1.22~10-3. For any turbulent-model-verification procedure, these initial boundary-layer con- 
ditions should be verified (or set) bq the computation. The measured local &-stream conditions are 
given in table I. For the 3-D sharpfin flows, the fin leading edge is slightly ahead of this station (13 cm). 
Therefore, a suitable boundary-layer code should be used to extrapolate upstream for appropriate initial 
conditions. 

Flow-field surveys were taken on the unadorned cylindrical test body to determine the initial 
boundary-layer conditions as described above. These surveys were taken at a location 133 cm from the 
tip, and up to y = 3 cm. Surveys were also taken at three positions, s = 5.5, 10.3, and 15.5 cm, along a 
ray on the 20" flare (s is measured along the flare surface). Quantities measured during these surveys, as 
well as derived quantities, are presented in table II for the undisturbed boundary layer and in table ID for 
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the flow field over the 20" flare. The shock wave produced by the flare is evident in the data for the two 
forward surveys. The shock wave was not reached at the most rearward station. (A complete set of 
surveys has been planned for all the flares. Survey results will be presented in a future publication.) 

Surface Measurements 

The surface-pressure distribution 50 cm upstream of the flare-phcement position is shown in fig- 
ure 7. It is evident that the resulting pressure m e n t ,  lO%/m, is small enough that we may consider 
negligible any effect of small longitudinal displacement ofthe s = 0 point of the flare and fin bodies away 
from this nominal position for this investigation. 

Surface-pressure and heat-transfer distributions over the four flares are given in table IV. The 
separation locations as measured by the oil-flow visualization technique were s = 0 for 6 = 20" and 30°, 
s = -3.1 cm for 8 = 32.5", and s = -6.3 cin for 8 = 35". Reattachment locations could not be deter- 
mined. For the surface conditions on the cylinder-flare combination, s represents the distance along the 
cylinder upstream of the s = 0 point (the negative values in table IV), and then the distance along a ray of 
the flare (the positive values). For the flares, the s = 0 point was at a distance of 139 cm from the model 
tip. For the sharp-fin flows, the fin leading edge was placed 120 cm from the model tip. The surface 
measurements adjacent to the fin were taken using an instrumented port on which pressure taps and ther- 
mocouples were placed in two concentric arcs, as shown in figure 8. me definitions of x, ss, and 0 are 
also shown in this figure.) The positions of the pressure taps and thermocouples on the port are given in 
table V. The surface data for the cylinder-fin combination is given in table VL Surface oil-flow data were 
also obtained for the sharp-fin flows. For all the fin angles, both a primary and a secondary convergence 
line were observed. The primary separation line for all cases was located approximately where 
pw/pw hf = 1.2. The secondary separation line was near the fin, approximately one-third of the distance 
between the fin and the primary separation line. Unfortunately these results would not show up well 
enough in black and white for photographs to be included in this report. 

These data are average values obtained from many rum. O;hermocouple and Schmidt-Boulter 
gauge data were averaged to obtain heat-transfer distributions upstream of tbe flares.) The surface heat- 
transfer results were not corrected for the small longitudinal conduction errors (less than 5%) but were 
corrected for run-to-run variations in wind tunnel temperature. This was done by assuming that the heat 
flux divided by the driving potential (TTi - Twi) is invariant for s d  changes in total temperature. 
Therefore: qcorrected = b u r e d  [(TTi -TWihomnal/flli - TWdrneasd- 

Experimental Uncertainties 

The uncertainties in the surface-pressure and heat-flux measurements were estimated to be 210%. 
For the flow-field quantities, the estimated uncertainties are f1.58 for the total temperature, f10% for the 
static pressure, i6% for the static temperature, 212% far the density, and S% for the velocity. The 
uncertainty in y is 33.02 cm. These uncertainties in the flow-field variables are due principally to zero 
offsets in the pressure measurements. Since each survey was obtained with a single probe, the uncer- 
tainty of the vertical variation in these flow-field quantities is significantly less than the numbers quoted 
above. 

CONCLUDING REMARKS 

Several cases of shock wavelhypersonic turbulent boundary layer interaction flows over a cone- 
ogive cylinder with attached flares and fins have been experimentally investigated. The resulting flows 
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were axisymmetric (with and without separation) and 3-D (with separation). These particular flows were 
chosen because they were relatively simple, but exhibited the same basic characteristics as complex 
hypersonic vehicles do. 

both the undisturbed and the interaction regimes) are presented here. These data will be useful for vali- 
dating present or future turbulence models. This validation procedure is necessary before attempts are 
made to compute more complex flows over actual fight vehicles. 

Surface-pressure and heat-transfer distributions, as well as results of several flow-field surveys (in 
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TABLE 1.- LOCAL FREE-STREAM CONDITIONS 

M, = 7.05 

T, = 81.2 K 

p, = 576 N/m2 

p, = 0.0252 kglm3 

Tw=311 K 

U, = 1274 m/sec 

60 = 2.5 cm 

6, = 0.74 cm 
* 

8, = 0.065 cm 

Res, = 1.45~105 

Reo, = 33x103 

Re/m = 58x106 

%C.o 

1/2 p-u, 
Cf, = = 1.22~10-3 

2 
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Y(CM) 

0.000 
0.065 
0.093 
0.120 
0.180 
0.250 
0.320 
0.390 
0.460 
0.620 
0.770 
0.940 
1.090 
1.260 
1.450 
1.640 
1 .goo 
2.150 
2.400 
2.700 
3.000 

Y(CM) 

0.000 
0.053 
0.096 
0.145 
0.195 
0.290 
0.395 
0.495 
0.590 
0.790 
0.890 
1.175 
1.360 

M 

0.000 
1.547 
2.177 
2.745 
3.111 
3.356 
3.610 
3.835 
4.070 
4.626 
5.248 
5.739 
6.070 
6.340 
6.599 
6.820 
6.962 
7.022 
7.048 
7.050 
7.050 

M 

0 * 000 
2.768 
2.800 
2.878 
2.983 
3.266 
3.701 
3.980 
4.043 
7.050 
7.050 
7.050 

TABLE II.- FLOW FIELD SURVEY 

UPSTREAM BOUNDARY LAYER 

P I  
P INF 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 

RHO I 
RHO INF 

0.269 
0.217 
0.264 
0.310 
0.338 
0.362 
0.388 
0.424 
0.454 
0.537 
0.643 
0.730 
0.794 
0.839 
0.901 
0.951 
0.978 
0.993 
1.000 
1 .ooo 
1 .ooo 

T I  
T INF 

3.711 
4.600 
3.793 
3.223 
2.959 
2,760 
2.576 
2.359 
2.204 
1.862 
1.555 
1.371 
1.260 
1.192 
1.110 
1.051 
1.023 
1.007 
1.000 
1 .ooo 
1 .ooo 

U I  
U INF 

0.000 
0.470 
0.601 
0.699 
0.759 
0.791 
0.822 
0.836 
0.858 
0.896 
0.929 
0.954 
0.967 
0.982 
0.986 
0.992 
0,999 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 

TABLE III(a).- FLOW FIELD SURVEYS 

20 DEGREE FLARE - S 5 . 5  CM 

P I  
P INF 

10.539 
10.539 
10.539 
10.539 
10.539 
10.539 
10.120 
9.760 
9.461 
1.000 
1.000 
1.000 

7.050 1.000 

RHO I 
RHO INF 

2.840 
2.793 
2.745 
2.762 
2.865 
3.126 
3.488 
3.728 
3.692 
0.994 
0.994 
0.996 
0.996 

T I  
T INF 

3.711 
3.774 
3.840 
3.815 
3.679 
3.372 
2.901 
2.618 
2.562 
1.006 
1.006 
1.004 
1.004 

U I  
U INF 

0.000 
0.763 
0.778 
0.797 
0.812 
0.851 
0.895 
0.914 
0.918 
1.004 
1.004 
1.003 
1.003 

R H O U I  T T I  
RHOU INF TT INF 

0.000 
0.102 
0.159 
0.217 
0.257 
0.287 
0.319 
0.354 
0.389 
0.481 
0.597 
0.696 
0.767 
0.824 
0.889 
0.944 
0.977 
0.993 
1 .ooo 
1.000 
1.000 

0.350 
0.638 
0.690 
0.752 
0.805 
0.830 
0.858 
0.858 
0.877 
0.905 
0.930 
0.954 
0.966 
0.986 
0.986 
0.991 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 

R H O U /  T T I  
RHOU INF TT INF 

0.000 
2.130 
2.136 
2.203 
2.326 
2.660 
3.120 
3.406 
3.391 
0.097 
0.997 
0.998 
0.998 

0.350 
0.881 
0.907 
0.931 
0.939 
0.968 
0.992 
0.998 
1 .ooo 
1.006 
1.006 
1.004 
1.004 
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Y(CM) 

0.000 
0.055 
0.100 
0.140 
0.185 
0.270 
0.360 
0.450 
0.650 
0.850 
1.050 
1.200 
1.420 
1.620 

Y(CM) 

0.000 
0.065 
0.083 
0.100 
0.138 
0.169 
0.198 
0.250 
0.300 
0.400 
0.520 
0.660 
0.710 
0.800 
0.  BOO 
1.000 
1.100 
1.200 
1.300 
1.400 
1.500 
1.600 

M 

0.000 
2.250 
2.859 
3.107 
3.157 
3.253 
3.336 
3.417 
3.605 
3.763 
3.835 
4.089 
7.052 
7.052 

M 

0.000 
2.533 
2.747 
2.997 
3.121 
3.168 
3.216 
3.286 
3.354 
3.431 
3.486 
3.540 
3.566 
3.613 
3.676 
3.737 
3.777 
3.777 
3.777 
3.777 
3.777 
3.737 

TABLE ID@).- FLOW FIELD SURVEYS 

20 DEGREE FLARE - S 10.3 CM 

P I  
P INF 

11.976 
11.976 
11.976 
11.976 
11.976 
11.976 
11.976 
11.976 
11.976 
11.976 
11.976 
9.581 
1 .ooo 
1 .ooo 

RHO I 
RHO INF  

3.227 
2.358 
3.031 
3.340 
3.404 
3.485 
3.584 
3.673 
3.939 
4.196 
4.335 
3.848 
1.002 
1.002 

T I  
T INF 

3.711 
5.079 
3.951 
3.585 
3.519 
3.437 
3.341 
3.260 
3.040 
2.854 
2.763 
2.490 
0.998 
0.998 

U I  
U INF 

0.000 
0.718 
0.806 
0.835 
0.840 
0.856 
0.865 
0.875 
0.892 
0.902 
0.904 
0.916 
1.001 
1.001 

TABLE III(c).- FLOW FIELD SURVEYS 

20 DEGREE FLARE - S 15.5 CM 

P I  
P INF 

12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 
12.335 

RHO I 
RHO INF 

3.324 
2.948 
3.143 
3.395 
3.495 
3.496 
3.536 
3.606 
3.667 
3.774 
3.861 
3.952 
3.996 
4.072 
4.174 
4.276 
4.344 
4.344 
4.344 
4.344 
4.344 
4.276 
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T I  
T INF 

3.711 
4.185 
3.925 
3.633 
3.529 
3.528 
3.489 
3.420 
3.364 
3.268 
3.194 
3.121 
3.087 
3.029 
2.955 
2.885 
2.839 
2.839 
2.839 
2.839 
2.839 
2.885 

U I  
U INF 

0.000 
0.735 
0.772 
0.810 
0.832 
0.844 
0.852 
0.862 
0.873 
0.880 
0.884 
0.887 
0.889 
0.892 
0.897 
0.901 
0.903 
0.903 
0.903 
0.903 
0.903 
0.901 

RHOU I 
RHOU INF 

0.000 
1.693 
2.443 
2.788 
2.859 
2.982 
3.101 
3.216 
3.513 
3.785 
3.921 
3.524 
1.003 
1.003 

RHOU I 

TT I 
TT INF 

0.350 
0.938 
0.955 
0.963 
0.965 
0.980 
0.986 
0.994 
1 .ooo 
1 .ooo 
0.995 
0.989 
1.001 
1 .OOl 

TT I 

0.000 
2.166 
2.426 
2.752 
2.907 
2.952 
3.013 
3.109 
3.200 
3.322 
3.414 
3.507 
3.553 
3.634 
3.743 
3.851 
3.923 
3.923 
3.923 
3.923 
3.923 
3.851 

RHOU INF TT INF 

0.350 
0.881 
0.906 
0.933 
0.954 
0.972 
0.980 
0.988 
0.999 
1.002 
1.001 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 



-11.3 
-10.3 

-9 .3  
-8 .3  
-7 .3  
-6 .3  
-5 .3  
-4 .3  
-3 .3 
-2 .3  
-1 .3  

1 . 1  
1 .6 
2 .1  
2 . 6  
3 . 6  
4 . 1  
4 . 6  
5 . 1  
6 . 1  
7 .1  

10.1 
12.1 
14.1 

TABLE N(a).- SURFACE DATA 

20 DEGREE FLARE 

0.97 
0.98 
0.96 
0.98 
0.97 
0.99 
1.03 
1 .oo 
1.02 
1 .oo 
1.09 
2.02 
3.68 
5.31 
5.96 
7.42 
8.27 
9.10 
9.95 

10.80 
11.30 
12.14 
12.26 
12.50 

-12.06 
-10.80 
-9.52 
-8.26 
-6.98 
-5.73 
-4.44 
-3.18 
-1.90 
-0.64 

1 . 1  
1 .6  
2 . 1  
2 .6  
3 . 1  
3 . 6  
4 . 6  
5 . 1  
6 . 1  
7 .1  
8 . 1  
9 . 1  

10.1 
1 2 . 1  
13.1 
14.1 
15.1 

W/QN INF 

0.98 
1.05 
1.06 
1.02 
1.03 
1 .oo 
1.03 
1.01 
0.99 
0.86 
4.79 
4.17 
4.99 
5.27 
5.94 
5.74 
6.04 
7.99 
8.59 
8.74 
8.64 
8.77 
9.18 
9.68 
9 .59  
9.36 
8.55 
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-11.3 
-10.3 

-9 .3  
-8 .3 
-7 .3 
-6 .3  
-5.3 
-4 .3 
-3 .3 
-2 .3  
-1.3 

1 . 1  
1 .6  
2 . 1  
2 .6  
3.6 
4.1 
4.6 
6 .1  
7.1 
8.1 

10.1 
12.1 
14.1 

TABLE IV(b).- SURFACE DATA 

30 DEGREE FLARE 

1 .oo 
0.98 
0.97 
0.98 
1 .oo 
1 .oo 
0.98 
1.02 
1.09 
1.39 
1.73 
7.75 
9.58 

12.85 
15.06 
19.51 
21.33 
21.94 
22.82 
22.88 
23.71 
24.40 
23.62 
22.60 

-12.06 
-10.80 

-9.52 
-8.26 
-6.98 
-5.73 
-4.44 
-3.18 
-1.90 
-0.64 

1 . 1  
1 .6  
2 . 1  
3 . 1  
3 . 6  
4 . 6  
5 . 1  
6 . 1  
7 . 1  
8 . 1  
9 . 1  

10.1 
1 1 . 1  
1 2 . 1  
13.1 
14.1 
15.1 

WIW INF 

0.99 
0.99 
1 .oo 
1 .oo 
1.01 
1.01 
1 .oo 
0.99 
0.99 
1 .02  
8.20 
8.97 

10.09 
12.05 
13.42 
14.39 
15.25 
14.86 
14.90 
14.60 
14.75 
14.45 
14.41 
13.98 
13.02 
12.87 
12.21 
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~~~ 

S(CM) 

-11.3 
-10.3 

-9 .3 
-8 .3 
-7.3 
-6 .3 
-5 .3  
-4 .3 
-3 .3  
-2 .3  
-1 .3 

0.55 
1.05 
1.55 
2.05 
2.55 
3.55 
4.05 
4.55 
6.05 
7.05 
8.05 

10.05 

TABLJZ W(C).- SURFACE DATA 

32.5 DEGREE FLARE 

1.01 
0.99 
0.98 
1.01 
0.97 
1.01 
1.03 
1 .12  
1.23 
1.71 
2.56 
5.85 
7.50 
8.42 

12.02 
14.40 
21.19 
23.57 
25.83 
27.14 
27.74 
27.62 
27.74 

-12.06 
-10.80 
-9.52 
-8.26 
-6.98 
-5.73 
-4.44 
-3.18 
-1.90 
-0.64 

1.05 
1.55 
2.05 
2.55 
3.05 
3.55 
4.55 
5 .05  
6.05 
7.05 
8.05 
9.05 

10.05 
11.05 

~ ~~ 

W/W INF 

1 .oo 
0.99 
1 .oo 
1.01 
1.03 
1.01 
1.05 
1.09 
1.33 
2.16 
6 .79  
7.44 
9.23 

10.64 
12.82 
14.55 
16.28 
17.05 
17.05 
16.67 
16.41 
16.54 
15.90 
15.77 

, 
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L 

-11.3 
-10.3 

-9 .3  
-8 .3  
-7 .3 
-6 .3  
-5 .3 
-4 .3  
-3 .3  
-2 .3  
-1 .3  

1.07 
1.57 
2.07 
2.57 
3.07 
3.57 
4.07 
4.57 
7.07 
8.07 

10.07 

TABLE IV(d).- SURFACE DATA 

35 DEGREE FLARE 

0.97 
0 .98  
1 .oo 
1.15 
1.45 
2.01 
2.53 
3.25 
3 .63  
4.41 
4 .56  
6.95 
8.82 

11.07 
14.05 
18.45 
21.79 
25.71 
28.93 
33.68 
33.69 
30.04 

-12.06 
-10.80 
-9.52 
-8.26 
-6.98 
-5.73 
-4.44 
-3.18 
-1.90 
-0.64 

1 .07  
1.57 
2.07 
2.57 
3 .07  
3 . 5 7  
5 .07  
6 .07  
7 .07  
9 .07  

10.07 

WIGMI INF 

0 .99  
1.07 
1 .oo 1 

1.04 1 
1 

1.02 
1.26 I 

1.83 
2.39 
2.63 
2.55 
6 .40  
7 .90  
9.65 

11.75 
13.82 
16.10 
20.03 
21.96 
21.37 
19.72 
19.97 
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TAP NO. 

2 
3 
4 
5 
6 
7 
8 
9 

10 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

TAP NO. 

3 
4 
5 
6 
7 
8 
9 

10 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

TABLE VI(a).- SURFACE DATA 

10 DEGREE F I N  

W I R N  INF GAGE NO. Q N I W  INF 

2.27 
1.67 
1.63 
1.48 
1.27 
1.09 
1 .oo 
0.99 
1 .oo 
1.96 
1.58 
1.66 
1.57 
1.41 
1.22 
1.06 
1.01 
1 .oo 
1 .oo 

2 
4 
5 
6 
7 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

TABLE VI@).- SLWACE DATA 

15 DEGREE F I N  

1.75 
1.37 
1.23 
1.06 
1.03 
1 .oo I 

1.75 
1.72 
1.35 
1.29 
1.15 
1.05 
1.06 
1.03 
1.03 
0.98 

R N I W  INF GAGE NO. CIMIIQN INF 

3.40 
1.73 
1.88 
1.84 
1.60 
1.29 
1.05 
1 .oo 
2.98 
1.71 
1.84 
1.94 
1.81 
1.58 
1.29 
1.08 
1 .oo 
0.99 

4 
5 
6 
7 

10 

13 
14 
15 
16 
17 
18 
19 
20 

I 

1.69 
1.65 
1.58 
1.40 
1.02 I 

I 

2.00 
1.48 
1.58 
1.46 
1.17 
1.02 
1 .oo 
0.97 
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TAP NO. 

5 
6 
7 
8 
9 

10 
11 

16 
17 
18 
19 
20 
21 
22 
23 

TABLE VI(c).- SURFACE DATA 

20 DEGREE F I N  

W/W INF GAGE NO. 

2.05 
2.00 
2.16 
2.06 
1.74 
1.33 
1.05 

2.99 
1.86 
2.01 
2.24 
2.08 
1.78 
1.38 
1.09 

4 
5 
6 
7 
8 
9 

10 

14 
15 
16 
17 
18 
19 
20 

W/W INF 

1.67 
1.86 
1.79 
1.86 
1.63 
1.30 
1.13 

1.54 
1.56 
1.75 
1.86 
1.59 
1.30 
1 .oo 
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_ -  
(a) 

(b) 

Figure 1.- Test body. (a) With flare attached (b) With fin attached. 
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Figure 2.- Survey mechanism. 
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I_- 7 cm-7 0.6 cm DIA. 
I 

Figure 3.- Pitot pressure probe. 

19 



FLOW rp8 cm * 
0.5 cm DIA. - 

I 
I 
I 
I 

0.5 cm 
3 ORIFICES 
0.036 cm DIA. 

0.107 cm O.D. SS 
TUBE x 0.069 cm I.D. 

I 
I 

120" APART 

Figure 4.- Static pressure probe. 

0.051 cm DIA. 

Figure 5.- Total temperature probe. 
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Figure 6.- Mean velocity distributions in law-of-the-wall coordinates for the undisturbed boundary layer. 
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Figure 7.- Surface pressure cent. 



jp 0 0 0  0 0  

Figure 8.- Location of surface instrumentation locations adjacent to fin. 
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